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A new method based on the two- and three-parameter principles of corresponding states was 
developed for determining combination rules of constants in different pressure- or volume-explicit 

. equations of state for use in calculating thermodynamic properties of liquid mixtures. The method 
employs in a consistent way the binary interaction parameters k ij , which characterize the strength 
of the i-j interaction. 

Equation-or-state approach to the calculation of thermodynamic properties of mix­
tures of gases or liquids is still widely used in chemical engineering. As soon as 
combination rules are known for evaluating constants in the equations of state 
of mixtures from those of the pure components, the properties of mixtures are 
readily calculated. However, the methods for determining these combination rules 
are often empirical without any theoretical justification. 

This is especially true when the properties of liquids are concerned , as for gaseous mixtures 
some theory is offered by the virial expansion of the Helmholtz free energy or pressure in powers 
of densityl,2. It is well known that this expansion can be applied neither for liquids nor for their 
mixtures and followingly the combination rules based on the virial expansion may be inappro­
priate when the properties of liquid mixtures are to be calculated. On the other hand the properties 
of liquid mixtures may be obtained successfully by using the principle of corresponding states, 
namely its one-fluid version3 - 6 . A two-parameter principle of corresponding states for pure 
fluid s may be derived by assuming a pairwise-additive intermolecular potential of the form 

(1) 

where r is the intermolecular distance, t:P is a function common for all fluids concerned, eo and 
ag are force constants of the reference fluid and I and h are energy well depth- and size-scaling 
parameters of the particular substance. Then it is possible to show 7 that for example the com­
pressibility factor z = pV/RTofthe fluid is a function only of the reduced temperature Tr = T/I 
and the reduced volume Vr = V/h as follows 

z = F(T/f, V/h) • (2) 

If we assume the same principle to hold for mixtures, which is of course only a rough approxima-
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tion even when Eq. (1) is valid for all components present, then we may write for z the correspond­
ing equation 

(3) 

where Ix and hx are the scaling parameters of the so-called equivalent substance. For the case 
of mixtures of Lennard-Jones 6 : 12 fluids, the following rules were found to be suitable6 

(4), (5) 
together with 

(6), (7) 

where the constants with identical indexes refer to pure components, Xi is the mole fraction of the 
i-th component and the constant k ij measures the strength of the i - j interaction. Although the 
best values of17 and p. were determined to be 17 = 4/3 and p. = 4/ 3, for practical purposes it should 
be sufficient to use any values of17 and p. from the ranges indicated in Eqs (4) and (5). For17 = p. = 
= 1, the rules reduce to the van der Waals oness . " 

Most of equations of state are pressure-explicit and so they can be written both 
for pure components and for mixtures in the form 

(8) 

where n is the number of empirical constants in the equation of state. If we assume 
that the two-parameter principle holds both for pure components and mixtures as 
expressed by Eqs (2) or (3), then by comparing a particular form of Eq. (8) with 
Eqs (2) or (3)we find that for each of the constants K E (Kl' ... Kn) it must hold 

K = fkh 1 for pure components (9) 
and 

K = f~h~ for mixtures. (10) 

The values of exponents k and 1 can be of course different for different constants K. 
With more complicated equations of state, the values of k and 1 do not coincide 
with the allowed range of 1] and J.l and, moreover, we need to separate the f from the 
h constants for evaluating the interaction constant kij in Eq. (7). As all equations 
of state contain at least one constant directly related to the excluded fluid volume 
(such are for example the b-constants in the van der Waals or Redlich- Kwong equa­
tions or the Eo-constants in the Beattie-Bridgeman or Benedict-,Webb-Rubin equa­
tions), we may determine first the combination rule for this constant denoted here 
as Kv by use of Eqs (5) and (6) with a convenient but fixed value of p, and oy finding 
the value of I in Eq. (9) with the result 

(11) (12) 
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This procedure may be adopted for all constants which do not contain the f-constant. 
For the remaining K constants we may proceed similarly with a convenient but fixed 
value of 1] in Eq. (4) by employing the value of hx determined from the constant Kv 
and by finding corresponding values of k and 1 in Eq. (9) from the equation of state. 
Thus, for the van der Waals equation of state and for f.l = 1] = 1 we obtain b = hand 

(13) 

and from a = fh == fb 

(14) 

These rules coincide with the original van der Waals ones only for 

(15) 

but not for th~ relations suggested by Eqs (6) and (7) 

bU 3 = (bU 3 + bW)/2, aij = (1 - k jj) (ajjajj/bjjbjj)o.s bij . (16) 

If we introduce the empirical factor (1 - k jj) to ajj in Eq. (15), the difference between 
Eqs (15) and (16) is quite negligible when correlating one property of a binary system, 
but the deviations may riseS when the same interaction constant k jj is then used 
to calculate another property of this binary or when it is used for computing some 
property of a multicomponent mixture containing i and j among other components. 
The proposed method could be especially useful for equations of state containing 
more constants; the interaction constant k jj could be thus introduced in a straight­
forward and consistent manner into the Benedict-Webb-Rubin equation of state. 

For polar or asymmetric molecules Eqs (2) and (3) do not hold and we must add 
at least one further, dimensionless parameter e to obtain a three-parameter principle 
of corresponding states: 

z = F(T/J, V/h, e) . (17) 

For such fluids, a rule was proposed9 for finding the value of this parameter in the 
mixture 

(18) 

This three-parameter principle of corresponding states could be also obtained from 
Eqs (8) and (9) if we found a constant K in an equation of state for which k = 1 = o. 
However, all existing equations of state do not contain such constant explicitly 
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so we must expand 10 the constants K in powers of e as 

(19) 

to obtain the three-parameter principle of corresponding states. 

For volume-explicit equations of state, Eq. (9) is replaced by 

(20) 

where Zc is the critical compressibility factor. This follows from the relation between 
the pressure- and volume-scaling factors for fluids obeying the three-parameter 
principle of corresponding states. The Zc of the mixture is then calculated by Eq. (18) 
and the resulting combination rules for constants K are obtained by separating all 
three zc,f, and h factors in Eq. (20). 

Thus, we have developed a new method based on the two- and three-parameter 
principles of corresponding states for determining combination rules of constants 
in different pressure- or volume-explicit equations of state for use in calculating 
thermodynamic properties of liquid mixtures. This method employs in a consistent 
way the binary interaction parameters kji, which characterize the strength of the i - j 

interaction. Calculations of properties of liquid mixtures using the Redlich-Kwong 
equation of state with the new rules are promising8

• 
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